Kernel-Based Supervised Discrete Hashing for Image Retrieval
نویسندگان
چکیده
Recently hashing has become an important tool to tackle the problem of large-scale nearest neighbor searching in computer vision. However, learning discrete hashing codes is a very challenging task due to the NP hard optimization problem. In this paper, we propose a novel yet simple kernel-based supervised discrete hashing method via an asymmetric relaxation strategy. Specifically, we present an optimization model with preserving the hashing function and the relaxed linear function simultaneously to reduce the accumulated quantization error between hashing and linear functions. Furthermore, we improve the hashing model by relaxing the hashing function into a general binary code matrix and introducing an additional regularization term. Then we solve these two optimization models via an alternative strategy, which can effectively and stably preserve the similarity of neighbors in a low-dimensional Hamming space. The proposed hashing method can produce informative short binary codes that require less storage volume and lower optimization time cost. Extensive experiments on multiple benchmark databases demonstrate the effectiveness of the proposed hashing method with short binary codes and its superior performance over the state of the arts.
منابع مشابه
Joint Kernel-Based Supervised Hashing for Scalable Histopathological Image Analysis
Histopathology is crucial to diagnosis of cancer, yet its interpretation is tedious and challenging. To facilitate this procedure, content-based image retrieval methods have been developed as case-based reasoning tools. Recently, with the rapid growth of histopathological images, hashing-based retrieval approaches are gaining popularity due to their exceptional scalability. In this paper, we ex...
متن کاملScalable histopathological image analysis via supervised hashing with multiple features
Histopathology is crucial to diagnosis of cancer, yet its interpretation is tedious and challenging. To facilitate this procedure, content-based image retrieval methods have been developed as case-based reasoning tools. Especially, with the rapid growth of digital histopathology, hashing-based retrieval approaches are gaining popularity due to their exceptional efficiency and scalability. Never...
متن کاملAnnouncing the Final Examination of Kai Li for the degree of Doctor of Philosophy Time & Location: June 6, 2017 at 10:00 AM in HEC 450 Title: Hashing for Multimedia Similarity Modeling and Large-scale Retrieval
In recent years, the amount of multimedia data such as images, texts, and videos have been growing rapidly on the Internet. Motivated by such trends, this thesis is dedicated to exploiting hashing-based solutions to reveal multimedia data correlations and support intra-media and inter-media similarity search among huge volumes of multimedia data. We start by investigating a hashing-based soluti...
متن کاملAnnouncing the Final Examination of Kai Li for the degree of Doctor of Philosophy Time & Location: June 6, 2017 at 10:00 AM in HEC 450 Title: Hashing for Multimedia Similarity Modeling and Large-scale Retrieval
In recent years, the amount of multimedia data such as images, texts, and videos have been growing rapidly on the Internet. Motivated by such trends, this thesis is dedicated to exploiting hashing-based solutions to reveal multimedia data correlations and support intra-media and inter-media similarity search among huge volumes of multimedia data. We start by investigating a hashing-based soluti...
متن کاملAnnouncing the Final Examination of Kai Li for the degree of Doctor of Philosophy Time & Location: June 6, 2017 at 10:00 AM in HEC 450 Title: Hashing for Multimedia Similarity Modeling and Large-scale Retrieval
In recent years, the amount of multimedia data such as images, texts, and videos have been growing rapidly on the Internet. Motivated by such trends, this thesis is dedicated to exploiting hashing-based solutions to reveal multimedia data correlations and support intra-media and inter-media similarity search among huge volumes of multimedia data. We start by investigating a hashing-based soluti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016